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Uncertainty Evaluation in a Nutshell

Measurement uncertainty
Reflects incomplete knowledge about value of
measurand

Expressed most completely by
probability distribution

Experimental data may be used alone
or combined with other information to

Estimate measurand

Evaluate measurement uncertainty
— Bottom Up vs. Top Down

Measurement equation
Monte Carlo / Gauss
NIST Uncertainty Machine

Observation equation
Mathematical Statistics
Expert collaboration
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Uncertainty Evaluation — Area of Circle
MEASUREMENT EQUATION & GAUSS’S FORMULA

Measure diameter D, compute radius R = D/2,
estimate measurand A = πR2

GAUSS’S FORMULA

(A)

A
≈ 2

(R)

R

●

●
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D = 5.6922m
R = 2.8461m (R) = 0.005m
A = 25.447m2 (A) ≈ 0.089m2
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Uncertainty Evaluation — Area of Circle
MEASUREMENT EQUATION & MONTE CARLO METHOD

Measure diameter D, compute radius R = D/2,
estimate measurand A = πR2

MONTE CARLO METHOD

Specify probability model to describe
uncertainty when defining diameter

Simulate process many times

Assess dispersion of area estimates

●

●

●

Diameter has Gaussian azimuth
with no bias and uncertainty π/30
A = 25.447m2 (A) = 0.099m2
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Uncertainty Evaluation — Thermal Bath
OBSERVATION EQUATION & STATISTICAL MODEL

Measure temperature of thermal bath every minute
for 100 minutes

Determine if bath is thermally stable, and if so
evaluate uncertainty of average temperature

ARIMA STATISTICAL MODEL

Identify best ARIMA model

Fit best model to data
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Best model is stationary:

bath thermally stable
t = 50.105 ◦C (t) = 0.001 ◦C

Possolo — 5 / 51

Outline

Uncertainty Evaluation in a Nutshell

Area of Circle — Gauss’s Formula
Area of Circle — Monte Carlo Method
Thermal Bath — Statistical Model

Probability Distributions & Random Variables

Measurement Uncertainty & Measurement Error

Measurement Models

Measurement Equations
Observation Equations

Evaluation of Measurement Uncertainty

NIST Uncertainty Machine

Load Cell Calibration
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Uncertainty — Meaning

MEANING

Uncertainty is the condition of being uncertain
(unsure, doubtful, not possessing complete or fully
reliable knowledge)

Also a qualitative or quantitative expression of the
degree or extent of such condition

It is a subjective condition because it
pertains to the perception or understanding
that you have of the object of interest
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Uncertainty — Interpretation (GUM)

INTERPRETATION (GUM)

The uncertainty of the result of a measurement
reflects the lack of exact knowledge of the value of
the measurand — GUM [3.3.1]

State of knowledge described most completely by
probability distribution over set of possible values of
measurand

Probability distribution expresses how well
one believes one knows the measurand’s
true value
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Probability Distributions — Motivation

Measurand:
Number of jelly
beans in the jar

Frequency distribution of students’
estimates

Depicts dispersion of
measurement results

Characterizes students’ collective
uncertainty

Number of Jelly Beans
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Probability Distributions & Random Variables
CONCEPTS

Probability distribution specifies probability of
unknown value of a quantity Y being in any given
subset of its range B

Pr(Y ∈ B), for B a subset of B

Random variable is a mathematical model for
unknown value of a quantity that has associated a
probability distribution

All quantities about whose values there is
uncertainty can be modeled as random variables

Even if the quantity value is fixed (but unknown)

Irrespective of whether they relate to chance events
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Probability Distributions & Random Variables
EXAMPLE

EXAMPLE — ATOMIC WEIGHT OF BORON

10.806 10.808 10.810 10.812 10.814
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Random variable Ar(B) describes atomic weight of boron
in sample known to come from one of main commercial
sources in US, Turkey, Chile, Argentina, or Russia

Probability density gives probability of Ar(B)’s value
being in any given interval as area under curve
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Measurement Uncertainty
VIM / GUM DEFINITION

DEFINITION

Measurement uncertainty is a non-negative
parameter characterizing the dispersion of the
quantity values being attributed to a measurand,
based on the information used — VIM 2.26

For scalar measurands, that parameter typically
chosen to be standard deviation of probability
distribution describing dispersion of values

For the many measurands that are not scalars
(spectra, maps, shapes, genomes, etc.)
use suitable generalization

Possolo — 14 / 51

Measurement Uncertainty — Sources

SOURCES / EFFECTS

Principles and methods of measurement

Definition of measurand

Environmental conditions

Instrument calibration

Calibration standards and corrections

Temporal drifts of relevant attributes of measurand,
instruments, procedures

Differences between operators and between
laboratories

Statistical models and methods for data reduction

Possolo — 15 / 51

Measurement Error

Difference between measured quantity value and
“true” (or, reference) quantity value

Not observable, and generally unknown

If measurand has conventional value (speed of
light), then that difference can be computed and
measurement error becomes known

Contemporary approach emphasizes uncertainty,
as opposed to error

Facilitates use of uniform methods for uncertainty
analysis
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Measurement Uncertainty — Evaluation

Evaluated so as to be fit for purpose

Sources of uncertainty may be evaluated based on:

Experimental data (Type A evaluations)

Other sources of information (Type B evaluations)

Elicitation of expert opinion
— structured procedure to do Type B evaluations,
for example using Sheffield Elicitation Frame-
work (SHELF)
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Measurement Error — Fixed (Systematic)

FIXED (Systematic) MEASUREMENT ERROR

Component of measurement error that, in replicate
measurements, either remains constant or varies in
a predictable manner

Incomplete extraction when measuring mass
fractions of multiple PCB congeners

Wrong value of thermal expansion coefficient in
length measurements

Evaluated either by Type A or Type B methods
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Measurement Error — Variable (Random)

VARIABLE (Random) MEASUREMENT ERROR

Component of measurement error that in replicate
measurements varies in an unpredictable manner

Manifest in dispersion of multiple measured values
obtained under repeatability conditions

Same measurement procedure, same operators,
same measuring system, same operating conditions
and same location, made on same object over short
period of time

Evaluated either by Type A or Type B methods
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Accuracy & Precision — Illustration
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Accuracy & Precision — Definition

MEASUREMENT ACCURACY (VIM 2.13)

Closeness of agreement between a measured
quantity value and a true quantity value of a
measurand

How to evaluate if true quantity is unknown?

MEASUREMENT PRECISION (VIM 2.15)

Closeness of agreement between indications or
measured quantity values obtained by replicate
measurements on the same or similar objects
under specified conditions
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Accuracy & Precision — Where’s the Target?
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Measurement Uncertainty — Evaluation
BOTTOM-UP / TOP-DOWN

Bottom-up assessments — uncertainty budgets for
individual labs or measurement methods

Top-down assessments — via interlaboratory and
multiple method studies

Often reveal unsuspected uncertainty components

Dark uncertainty
— Thompson & Ellison (2011)
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Types of Measurement Uncertainty Evaluations

TYPE A

Based on statistical scatter of measured values
obtained under comparable measurement
conditions (repeatability, reproducibility)

TYPE B

Based on other evidence, including information

Published in compilations of quantity values

Obtained from a calibration certificate, or
associated with certified reference material

Obtained from experts
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Uncertainty Components — Interlab Study

Lab-specific

Dispersion of measured values from different labs
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Measurement Models & Uncertainty Evaluations
ORIENTATION

MEASUREMENT MODELS

Measurement equations

Observation equations

May have to use both in the course of an uncertainty
evaluation

UNCERTAINTY EVALUATIONS

Measurement equations: Gauss’s formula or Monte
Carlo Method — NIST Uncertainty Machine

Observation equations: Statistical methods
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Measurement Models
MEASUREMENT EQUATION

DEFINITION

Measurand (output quantity) is known function of
input quantities

Estimates of the input quantities and
characterizations of associated uncertainties are
available

EXAMPLE

Thermal expansion coefficient

α =
L1 − L0

L0(T1 − T0)
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Measurement Models
OBSERVATION EQUATION — DEFINITION & EXAMPLE (TEMPERATURE)

DEFINITION

Measurand is function of parameters of statistical
model for experimental data

EXAMPLE

Replicated measurements of temperature τ:
t1 = 99.49 ◦C, t2 = 100.42 ◦C, t3 = 99.56 ◦C,
t4 = 100.95 ◦C

Measurement model (observation equation)
t = τ + ε, for  = 1, . . . ,4
ε1, ε2, ε3, ε4 non-observable measurement errors
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Measurement Models
OBSERVATION EQUATION — EXAMPLE (WEIBULL LIFETIME)

Lifetime W of mechanical part has Weibull
probability distribution with shape α and scale β

logW = logβ+ 1
α log(− logU)

Non-observable “error” U has rectangular
distribution on (0,1)

Measurand is expected lifetime η = β(1+ 1
α )
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Model Selection
MEASUREMENT EQUATION vs. OBSERVATION EQUATION

MEASUREMENT EQUATION

Measurand is known function of input quantities,
and these do not depend on value of measurand

Estimates of input quantities, and characterizations
of associated uncertainties, are available

OBSERVATION EQUATION

Observable quantities (experimental data) depend
on value of measurand but relationship between
them is stochastic, not deterministic

Replicated values of same observable quantity
typically vary (i.e., they are mutually inconsistent)
even though measurand remains invariant
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Measurement Uncertainty — Evaluation
MEASUREMENT EQUATION & GAUSS’S FORMULA

Y = ƒ (X1, . . . , Xn)

GAUSS’S (1823) FORMULA — GUM (10), (13)

2(y) ≈
n
∑

j=1

c2
j
2(j) + 2

n−1
∑

j=1

n
∑

k=j+1

cjck(j)(k)r(j, k)

cj Value at (1, . . . , n) of first-order partial
derivative of ƒ with respect to jth argument

r(j, k) Correlation between Xj and Xk
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Gauss’s Formula
INGREDIENTS & ASSUMPTIONS

Estimates, standard uncertainties, and correlations
of input quantities

Values of partial derivatives of ƒ

Measurement function ƒ approximately linear in
neighborhood of estimates of input quantities

Uncertainty of input quantities small relative to size
of that neighborhood

Probabilistic interpretation of y± k(y) involves
additional assumptions
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Measurement Uncertainty — Evaluation
MEASUREMENT EQUATION & MONTE CARLO METHOD

Y = ƒ (X1, . . . , Xn)

MONTE CARLO METHOD — GUM-S1

Apply perturbations to values of input quantities
drawn from respective probability distributions

Compute value of output quantity for each set of
perturbed values of input quantities

Values of output quantity are sample from
corresponding probability distribution:

Their standard deviation is an evaluation of (y)

Use them also to produce coverage intervals and to
characterize Y’s probability density
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Monte Carlo Method
INGREDIENTS & ASSUMPTIONS

Joint probability distribution of input quantities
specified fully

Specialized software to simulate draws from that
distribution

No need for linearizations (approximations) or for
partial derivatives

Results automatically interpretable probabilistically
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Temperature Measurement
OBSERVATION EQUATION

Replicated measurements of temperature τ:
t1 = 99.49 ◦C, t2 = 100.42 ◦C, t3 = 99.56 ◦C,
t4 = 100.95 ◦C

Observation equation t = τ + ε

If non-observable measurement errors {ε} have
same Gaussian probability distribution with mean 0
and same standard deviation, then bτ = t =
(99.49+ 100.42+ 99.56+ 100.95)/4 = 100.11 ◦C
estimates τ with minimum mean squared error

Under different assumptions, best estimate
need not be the average!
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Temperature Measurement
UNCERTAINTY EVALUATION

In the absence of any other recognized sources of
uncertainty, and under same assumptions that
make t best estimate:

(t) = SD(99.49,100.42,99.56,100.95)/
p
4

= 0.35 ◦C

100.11± (4.30× 0.35) = (98.98 ◦C,101.23 ◦C) is
approximate 95 % coverage interval for τ

4.30 is the 97.5th percentile of Student’s t
distribution with 3 degrees of freedom
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F-100 Super Sabre Lifetime
OBSERVATION EQUATION — EXAMPLE

Measurand: component lifetime

Times to failure (hour): 0.22, 0.50, 0.88, 1.00, 1.32,
1.33, 1.54, 1.76, 2.50, 3.00, 3+, 3+, 3+
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F-100 Super Sabre Lifetime
VALUE ASSIGNMENT, UNCERTAINTY EVALUATION

Observation equation (statistical model)

Observed lifetimes are sample from
Weibull distribution with shape α and scale β

Value assignment

Maximum likelihood estimates of parameters are bα
and bβ that maximize likelihood function, and
bη = bβ(1+ 1/ bα)

Uncertainty evaluation
Parametric statistical bootstrap

Draw samples from fitted distribution, of the same
size and censored as experimental data

Estimate parameters from these samples and
compute corresponding values of expected lifetime:
their standard deviation is evaluation of (η)

Possolo — 39 / 51

F-100 Super Sabre Lifetime
MAXIMUM LIKELIHOOD ESTIMATE, STATISTICAL BOOTSTRAP

Measurement result: bη = 1.84h, (bη) = 0.30h

Lifetime shorter than 4.5h with 99 % probability
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Evaluation of Measurement Uncertainty
METHODS & TOOLS

METHODS

(1) Gauss’s formula (Measurement Equation)

(2) Monte Carlo method (Measurement Equation and
Observation Equation)

(3) Statistical method (Observation Equation)

TOOLS

(1) NIST Uncertainty Machine

(2) NIST Uncertainty Machine

(3) Collaboration between metrologist and statistician
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NIST Uncertainty Machine
EXAMPLES

Thermal expansion coefficient

Falling ball viscometer

End-Gauge calibration

Resistance

Stefan-Boltzmann constant

Freezing point depression
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NIST Uncertainty Machine — Example
THERMAL EXPANSION COEFFICIENT

α =
L1 − L0

L0(T1 − T0)

 () ν

T0 288.15K 0.02K 3
L0 1.4999m 0.0001m 3
T1 373.10K 0.05K 3
L1 1.5021m 0.0002m 3
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Example
FALLING BALL VISCOMETER

μM = μC
ρB − ρM

ρB − ρC

tM

tC
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GUM
GUM−S1

22% solution of sodium hydroxide in water at 20 ◦C
HAAKE boron silica glass ball no. 2
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Load Cell Calibration
DATA & RESIDUALS
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Relative standard uncertainties for both forces and
indications are 0.0005%
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Load Cell Calibration
PROBLEM & SOLUTION

Calibration function produces values of force
corresponding to response indications: F = φ(R)

PROBLEM

Both variables are affected by uncertainty
Dispersion of response indications exceeds
undertainty associated with each one individually

SOLUTION

Errors-in-variables regression, as in ISO 6143:2001(E)
for calibration of gas mixtures
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Load Cell Calibration
ERRORS-IN-VARIABLES REGRESSION

Second-degree polynomial is an adequate model
for calibration function: φ(R) = α + βR+ γR2

Determine α, β, γ, and ρ1, . . . , ρm that minimize

m
∑

=1





�

F − φ(ρ)
�2

2(F)
+

�

R − ρ
�2

2(R) + σ2





σ describes the dispersion of replicated response
indications at a fixed force setting
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Load Cell Calibration
UNCERTAINTY EVALUATION — GUM SUPPLEMENT 1

Repeat the following steps n times

Add Gaussian perturbations to the { bρ}
with mean 0 and variances {2(R) + bσ2}

Add Gaussian perturbations to the {bF}
with mean 0 and variances {2(F)}

Fit the errors-in-variables model to the perturbed
values
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Load Cell Calibration
UNCERTAINTY EVALUATION — RESULTS

Probability distributions describing uncertainties
associated with forces
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nist uncertainty machine v. 1.0

Uncertainty Machine — User’s Manual

Thomas Lafarge Antonio Possolo

Statistical Engineering Division
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

July 10, 2013

1 Purpose

NIST’s UncertaintyMachine is a software application to evaluate the measurement uncer-
tainty associated with an output quantity defined by a measurement model of the form
y = f (x1, . . . , xn), where the real-valued function f is specified fully and explicitly, and the
input quantities are modeled as random variables whose joint probability distribution also
is specified fully.

The UncertaintyMachine evaluates measurement uncertainty by application of two different
methods:

• The method introduced by Gauss [1823] and described in the Guide to the Evaluation of
Uncertainty in Measurement (GUM) [Joint Committee for Guides in Metrology, 2008a]
and also by Taylor and Kuyatt [1994];

• The Monte Carlo method described by Morgan and Henrion [1992] and specified in
the Supplement 1 to the GUM (GUM-S1) [Joint Committee for Guides in Metrology,
2008b].

2 Gauss’s Formula vs. Monte Carlo Method

The method described in the GUM produces an approximation to the standard measurement
uncertainty u(y) of the output quantity, and it requires:

(a) Estimates x1, . . . , xn of the input quantities;

(b) Standard measurement uncertainties u(x1), . . . , u(xn);

(c) Correlations {ri j} between every pair of different input quantities (by default these are
all assumed to be zero);

(d) Values of the partial derivatives of f evaluated at x1, . . . , xn.
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nist uncertainty machine v. 1.0

When the probability distribution of the output quantity is approximately Gaussian, then
the interval y ± 2u(y) may be interpreted as a coverage interval for the measurand with
approximately 95 % coverage probability.

The GUM also considers the case where the distribution of the output quantity is approx-
imately Student’s t with a number of degrees of freedom that may be a function of the
numbers of degrees of freedom that the {u(x j)} are based on, computed using the Welch-
Satterthwaite formula [Satterthwaite, 1946, Welch, 1947].

In general, neither the Gaussian nor the Student’s t distributions need model the dispersion
of values of the output quantity accurately, even when all the input quantities are modeled
as Gaussian random variables.

The GUM suggests that the Central Limit Theorem (CLT) lends support to the Gaussian
approximation for the distribution of the output quantity. However, without a detailed ex-
amination of the measurement function f , and of the probability distribution of the input
quantities (examinations that the GUM does not explain how to do), it is impossible to
guarantee the adequacy of the Gaussian or Student’s t approximations.

note. The CLT states that, under some conditions, a sum of independent random vari-
ables has a probability distribution that is approximately Gaussian [Billingsley, 1979,
Theorem 27.2]. The CLT is a limit theorem, in the sense that it concerns an infinite
sequence of sums, and provides no indication about how close to Gaussian the distribu-
tion of a sum of a finite number of summands will be. Other results in probability theory
provide such indications, but they involve more than just the means and variances that
are required to apply Gauss’s formula.

The Monte Carlo method provides an arbitrarily large sample from the probability distri-
bution of the output quantity, and it requires that the joint probability distribution of the
random variables modeling the input quantities be specified fully.

This sample alone suffices to compute the standard uncertainty associated with the output
quantity, and to compute and to interpret coverage intervals probabilistically.

example. Suppose that the measurement model is y = ab/c, and that a, b, and c are
modeled as independent random variables such that:

• a is Gaussian with mean 32 and standard deviation 0.5;

• b has a uniform (or, rectangular) distribution with mean 0.9 and standard devia-
tion 0.025;

• c has a symmetrical triangular distribution with mean 1 and standard deviation
0.3.

Figure 1 on Page 3 shows the graphical user interface of the UncertaintyMachine filled
in to reflect these modeling choices, and the results that are printed on-screen. Figure 2
on Page 4 shows a probability density estimate of the distribution of the output quantity.
The method described in the GUM produces y = 28.8 and u(y) = 8.7. According to the
conventional interpretation, the interval (11.4, 46.2) may be a coverage interval with
approximately 95 % coverage probability.
A sample of size 1× 107 produced by application of the Monte Carlo method has average
32.20 and standard deviation 12.53. Since only 88 % of the sample values lie within
(11.4, 46.2), the coverage probability of this coverage interval is much lower than the
conventional interpretation would have led one to believe.
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Monte Carlo Method

Summary statistics for sample of size 1e+06

ave = 32.2
sd = 12.5
median = 28.8
mad = 8.9

Coverage intervals

99% ( 17.12 , 85 ) k = 2.7
95% ( 18 , 67 ) k = 2
90% ( 19.11 , 58 ) k = 1.6
68% ( 21.8 , 42 ) k = 0.81
50% ( 23.7 , 37 ) k = 0.53

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation)

y = 28.8
u(y) = 8.69

SensitivityCoeffs Percent.u2
a 0.9 0.27
b 32.0 0.85
c -29.0 99.00
Correlations NA 0.00
============================================

Figure 1: ABC. Entries in the GUI correspond to the example discussed in §2. In each
numerical result, only the digits that the UncertaintyMachine deems to be significant
are printed.
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Figure 2: ABC — Densities. Estimate of the probability density of the output quan-
tity (solid blue line), and probability density (dotted red line) of a Gaussian distribu-
tion with the same mean and standard deviation as the output quantity, corresponding
to the results listed in Figure 1 on Page 3. In this case, the Gaussian approximation is
very inaccurate.

3 Software

NIST’s UncertaintyMachine should run on any computer where Oracle’s Java (www.java.
com) is installed, irrespective of the operating system. Since the computations are done using
facilities of the R environment for statistical computing and graphics [R Development Core
Team, 2012], this too, must be installed. The software is installed as described in §10.

note. Some commercial products, including software, are identified in this manual in
order to specify the means whereby the UncertaintyMachine may be employed. Such
identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the software
identified is necessarily the only or best available for the purpose.

4 Usage

The following instructions are for using the UncertaintyMachine under the Microsoft Win-
dows operating system: under other operating systems, the steps are similar.

(U-1) Either by double-clicking the UncertaintyMachine icon where it will have been in-
stalled, or by selecting the appropriate item in the Startmenu, launch the application’s
graphical user interface (GUI), which is displayed in a resizable window.

(U-2) If one wishes to use a saved configuration, click Load Parameters, select the file
where parameters will have been saved previously, and continue.
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(U-3) Choose the number of input quantities from the drop-down menu corresponding to
the entry Number of input quantities. In response to this, the GUI will update itself
and show as many boxes as there are input quantities, and assign default names to
them (which may be changed as explained below).

(U-4) Enter the size of the sample to be drawn from the probability distribution of the output
quantity, into the box labeled Number of realizations of output quantity: the
default value, 1× 106, is the minimum recommended sample size.

(U-5) Enter the names of the input quantities into the boxes following Names of input

quantities.

(U-6) Click the button labeled Update quantity names: this will update the labels of the
boxes that appear farther down in the GUI that are used to assign probability distri-
butions to the input quantities.

(U-7) Enter a valid R expression into the box labeled Value of output quantity (R expression)

that defines the value of the output quantity. This expression should involve only the
input quantities, and functions and numerical constants that R knows how to evalu-
ate. (Remember that R is case sensitive.)

Alternatively, the definition may comprise several R expressions, possibly in different
lines within this box (pressing Enter on the keyboard, with the cursor in this box,
creates a new line), but the last expression must evaluate the output quantity (without
assigning this value to any variable).

example. If the measurement model is A = (L1 − L0)/
�

L0(T1 − T0)
�

, then the R
expression that should then be entered into this box is (L1-L0)/(L0*(T1-T0)).
Alternatively, the box may comprise these three lines:
N = L1-L0
D = L0*(T1-T0)
N / D

Note that the last expression produces the value f (x1, . . . , xn) that the measure-
ment function takes at the estimates of the input quantities.

(U-8) Assign a probability distribution to each of the input quantities, using the drop-down
menus in front of them. Once a choice is made, one or more additional input boxes
will appear, where values of parameters must be entered fully to specify the prob-
ability distribution that was selected. Table 1 on Page 7 lists the distributions im-
plemented currently, and their parametrizations. Note that some distributions have
more than one parametrization: in such cases, only one of the parametrizations needs
to be specified.

(U-9) If there are correlations between input quantities that need to be taken into account,
then check the box marked Correlations, and enter the values of non-zero correla-
tions into the appropriate boxes in the upper triangle of the correlation matrix that
the GUI will display.

(U-10) If the box marked Correlations has been checked, then besides having specified
correlations in (U-9), also select a copula (currently, either Gaussian or Student’s t)
to manufacture a joint probability distribution for the input quantities. If the copula
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chosen is (multivariate) Student’s t, then another box will appear nearby to receive
the number of degrees of freedom.

note. The resulting joint distribution reproduces the correlation structure that
has been specified, and has the distributions specified for the input quantities as
margins. Possolo [2010] explains and illustrates the role that copulas play in un-
certainty analysis.

(U-11) Optionally, if you wish to save the results of the calculations (numerical and graphi-
cal), then click the button labeled Choose file, and use the file selection dialog that
is displayed to select the location, and the prefix for the output files.

The prefix will be used to define the names of the three output files that will be
created: (i) a plain ASCII text file where the sample of values of the output quantity
will be written to, one per line; (ii) a JPEG file with a plot; and (iii) a plain ASCII text
file with summary statistics of the Monte Carlo sample drawn from the distribution
of the output quantity, and with the estimate of the measurand and the standard
uncertainty evaluated as specified in the GUM.

example. If the specified prefix is ABC.txt or ABC, then the three output files that
will be created and named automatically will be called ABC-values.txt, ABC-density.jpg
and ABC-results.txt.

(U-12) Optionally, save the parameters specified in the GUI by clicking Save Parameters

and choosing a file to save the GUI’s current configuration to. This configuration
comprises the definition of the measurement model and the parameter settings.

(U-13) Click the button labeled Run. In response to this, a window will open where numerical
results will be printed, and a graphics window will also open to display graphical
results. If a file name will have been specified in (U-11), then both numerical and
graphical output are saved to files.

The UncertaintyMachine estimates the number of significant digits in the results, and
reports only these. To increase the number of significant digits, another run will have
to be done with a larger sample size than what was specified in (U-4).

(U-14) To quit, press the button labeled Quit on the GUI, and close the window that the
UncertaintyMachine created in (U-13), which will induce the graphics window also
to close.

5 Results

The UncertaintyMachine produces output in two windows on the screen, and optionally
writes three files to disk, described next.

• One of the outputs shown on the computer screen is an R graphics window that shows
a kernel estimate [Silverman, 1986] of the probability density of the output quantity
(drawn in a solid blue line), and the probability density of the Gaussian distribution
with the same mean and standard deviation as the Monte Carlo sample of values of
the output quantity (drawn as a red dotted line).
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name parameters constraints

Bernoulli Prob. of success 0< Prob. of success< 1
Beta Mean, StdDev 0< Mean< 1, 0< StdDev<½

Shape1, Shape2 Shape1> 0, Shape2> 0
Chi-Squared DF DF> 0
Exponential Mean Mean> 0
Gamma Mean, StdDev Mean> 0, StdDev> 0

Shape, Scale Shape> 0, Scale> 0
Gaussian Mean, StdDev StdDev> 0
Gaussian – Truncated Mean, StdDev, Left, Right StdDev> 0, Left< Right
Rectangular Mean, StdDev StdDev> 0

Left, Right Left< Right
Student’s t Mean, StdDev, DF StdDev> 0, DF> 2

Center, Scale, DF Scale> 0, DF> 0
Triangular – Symmetric Mean, StdDev StdDev> 0

Left, Right Left< Right
Triangular – Asymmetric Left, Right, Mode Left¶ Mode¶ Right;Left 6= Right
Uniform Mean, StdDev StdDev> 0

Left, Right Left< Right
Weibull Mean, StdDev Mean> 0, StdDev> 0

Shape, Scale Shape> 0, Scale> 0

Table 1: Distributions. Several distributions are available with alternative
parametrizations: for these, it suffices to select and specify one of them. The rect-
angular distribution is the same as the uniform distribution. DF stands for number of
degrees of freedom. Left and Right denote the left and right endpoints of the interval
to which a distribution assigns probability 1. For the truncated Gaussian distribution,
Mean and StdDev denote the mean and standard deviation without truncation: the ac-
tual mean and standard deviation depend also on the truncation points, and it is the
actual mean and standard deviation that the GUM and Monte Carlo methods use in
their calculations. The mode of a distribution is where its probability density reaches
its maximum. A Student’s t distribution will have infinite standard deviation unless
DF > 2, and its mean will be undefined unless DF > 1. The values assigned to the
parameters must satisfy the constraints listed.
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• Numerical output is written in another window, in the form of a table with summary
statistics for the sample that was drawn from the probability distribution of the output
quantity: average, standard deviation, median, mad.

note. “mad” denotes the median absolute deviation from the median, multiplied
by a factor (1.4826) that makes the result comparable to the standard deviation
when applied to samples from Gaussian distributions.

Also listed are coverage intervals with coverage probabilities 99 %, 95 %, 90 %, 68 %,
and 50 %. The interval with 68 % coverage probability is often called a “1-sigma in-
terval”, and the interval with 95 % coverage probability is often called a “2-sigma
interval”: however, these designations are appropriate only when the distribution of
the output quantity is approximately Gaussian. Next to each interval is listed the value
of the corresponding coverage factor k (cf. GUM §3.3.7, §6.2).

Below these, and in the same window, are listed the value of the output quantity
corresponding to the estimates of the input quantities, and the value of u(y) computed
using formula (13) in the GUM [Joint Committee for Guides in Metrology, 2008a,
Page 21].

Finally, a table shows the sensitivity coefficients that are defined in the GUM §5.1.3:
the values of the partial derivatives of the measurement function f evaluated at the
estimates of the input quantities.

The same table also shows the percentage contributions that the different input quan-
tities make to the squared standard uncertainty of the output quantity. If the input
quantities are uncorrelated, then these contributions add up to 100 % approximately.
If they are correlated, then the contributions may add up to more or less than 100 %:
in this case, the line labeled Correlations will indicate the percentage of u2(y) that is
attributable to those correlations (this percentage is positive if u2(y) is larger than it
would have been in the absence of correlations).

• If the user has specified a file name prefix in (U-11), following Save results in file

in the GUI, then the first output file name ends in -values.txt and is a plain ASCII
text file with one value per line of the sample that was drawn from the probability
distribution of the output quantity. This file may be read into R or into any other com-
puter program for statistical analysis, to produce additional numerical and graphical
summaries.

• The second output file has the same prefix as the file just mentioned, but its name
ends in -results.txt, and contains the same summary statistics and GUM uncertainty
evaluation that were already displayed on the screen.

• The third output file has the same prefix as the file just mentioned, but its name ends in
-density.jpg, and it is a JPEG file with the same graphical output that was displayed
in the graphics window on the screen.

6 Example — Thermal Expansion Coefficient

To measure the coefficient of linear thermal expansion of a cylindrical copper bar, the length
L0 = 1.4999m of the bar was measured with the bar at temperature T0 = 288.15 K, and
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then again at temperature T1 = 373.10 K, yielding L1 = 1.5021m. The measurement model
is A= (L1 − L0)/

�

L0(T1 − T0)
�

(this “A” denotes uppercase Greek alpha).

For the purpose of this illustration we will assume that the input quantities are like (scaled
and shifted) Student’s t random variables with 3 degrees of freedom, with means equal to
the measured values given, and standard deviations u(L0) = 0.0001m, u(L1) = 0.0002 m,
u(T0) = 0.02 K, and u(T1) = 0.05K.

note. The assignment of distributions to the four input quantities would be appropriate
if their estimates were averages of four replicated readings each, and these were out-
comes of independent Gaussian random variables with unknown common mean and
standard deviation.

The GUM’s approach yields α= 1.727× 10−5 K−1 and u(α) = 1.8× 10−6 K−1, and the Monte
Carlo method reproduces these results. Figure 3 on Page 10 reflects these facts, and lists the
numerical results. The graphical results are displayed in Figure 4 on Page 11.

7 Example — End-Gauge Calibration

In Example H.1 of the GUM (which is reconsidered by Guthrie et al. [2009]), the measure-
ment model is l = lS + d − lS(δα · θ + αS · δθ ). The estimates and standard measurement
uncertainties of the input quantities are listed in Table 2. For the Monte Carlo method,
we model the input quantities as independent Gaussian random variables with means and
standard deviations equal to these estimates and standard measurement uncertainties.

quantity x u(x)

lS 50000 623 nm 25 nm
d 215 nm 9.7 nm
δα 0 ◦C−1 0.58× 10−6 ◦C−1

θ −0.1 ◦C 0.41 ◦C
αS 11.5× 10−6 ◦C−1 1.2× 10−6 ◦C−1

δθ 0 ◦C 0.029 ◦C

Table 2: End-Gauge Calibration. Estimates and standard measurement uncertain-
ties for the input quantities in the measurement model of Example H.1 in the GUM.

The GUM’s approach yields l = 50000 838nm and u(l) = 32 nm, while the Monte Carlo
method reproduces the value for l but evaluates u(l) = 34 nm.

The GUM (Page 84) gives (50 000 745nm, 50000 931nm) as an approximate 99 % coverage
interval for l, and the results of the Monte Carlo method confirm this coverage probability.
If one chooses a coverage interval that is probabilistically symmetric (meaning that it leaves
0.5 % of the Monte Carlo sample uncovered on both sides), then the Monte Carlo method
produces (50000 749nm, 50000 927nm) as 99 % coverage interval (and this is not quite
centered at the estimate of y).

Figure 5 on Page12 reflects these facts and lists the numerical results. The graphical results
are displayed in Figure 6 on Page 13.
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Monte Carlo Method

Summary statistics for sample of size 1e+06

ave = 1.727e-05
sd = 1.7e-06
median = 1.727e-05
mad = 1e-06

Coverage intervals

99% ( 1.15e-05 , 2.3e-05 ) k = 3.3
95% ( 1.4e-05 , 2.05e-05 ) k = 1.9
90% ( 1.48e-05 , 1.973e-05 ) k = 1.4
68% ( 1.6e-05 , 1.857e-05 ) k = 0.74
50% ( 1.643e-05 , 1.811e-05 ) k = 0.48

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation)

y = 1.727e-05
u(y) = 1.8e-06

SensitivityCoeffs Percent.u2
L0 -7.9e-03 2.0e+01
L1 7.8e-03 8.0e+01
T0 2.0e-07 5.4e-04
T1 -2.0e-07 3.4e-03
Correlations NA 0.0e+00
## ============================================

Figure 3: Thermal Expansion Coefficient. Entries in the GUI correspond to
the example discussed in §6. In each numerical result, only the digits that the
UncertaintyMachine deems to be significant are printed.
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Figure 4: Thermal Expansion Coefficient — Densities. Estimate of the probability
density of the output quantity (solid blue line), and probability density (dotted red
line) of a Gaussian distribution with the same mean and standard deviation as the
output quantity, corresponding to the results listed in Figure 3 on Page 10.

8 Example — Resistance

In Example H.2 of the GUM, the measurement model for the resistance of an element of an
electrical circuit is R= (V/I) cos(φ). The estimates and standard uncertainties of the input
quantities, and the correlations between them, are listed in Table 3 on Page 11.

For the Monte Carlo method, we model the input quantities as correlated Gaussian random
variables with means and standard deviations equal to the estimates and standard uncer-
tainties listed in Table 3, and with correlations identical to those given in the same table.
We also adopt a Gaussian copula to manufacture a joint probability distribution consistent
with the assumptions already listed.

quantity x u(x)

V 4.9990 V 0.0032 V
I 19.6610× 10−3 A 0.0095× 10−3 A
φ 1.04446 rad 0.00075 rad

r(V, I) = −0.36 r(V,φ) = 0.86 r(I ,φ) = −0.65

Table 3: Resistance. Estimates and standard measurement uncertainties for the in-
put quantities in the measurement model of Example H.2 in the GUM, and correlations
between them, all as listed in Table H.2 of the GUM.

The GUM’s approach and the Monte Carlo method produce the same values of the output
quantity R = 127.732Ω and of the standard uncertainty u(R) = 0.07Ω. The Monte Carlo
method yields (127.595Ω, 127.869Ω) as approximate 95 % coverage interval for the resis-
tance without invoking any additional assumptions about R. Figure 7 on Page 14 reflects
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Monte Carlo Method

Summary statistics for sample of size 1e+06

ave = 50000838
sd = 33.9
median = 50000838
mad = 34

Coverage intervals

99% ( 50000750 , 50000927 ) k = 2.6
95% ( 50000770 , 50000900 ) k = 1.9
90% ( 50000780 , 50000894 ) k = 1.7
68% ( 50000804 , 50000872 ) k = 1
50% ( 50000815 , 50000861 ) k = 0.68

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation)

y = 50000838
u(y) = 31.7

SensitivityCoeffs Percent.u2
lS 1 62.00
d 1 9.40
dalpha 5000000 0.84
theta 0 0.00
alphaS 0 0.00
dtheta -580 28.00
Correlations NA 0.00
============================================

Figure 5: End-Gauge Calibration.
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Figure 6: End-Gauge Calibration — Densities. Estimate of the probability density
of the output quantity (solid blue line), and probability density (dotted red line) of
a Gaussian distribution with the same mean and standard deviation as the output
quantity, corresponding to the results listed in Figure 5 on Page 12.

these facts, and lists the numerical results. The graphical results are displayed in Figure 8
on Page 15.

9 Example — Stefan-Boltzmann Constant

The functional relation used to define the Stefan-Boltzmann constant σ involves the Planck
constant h, the molar gas constant R, Rydberg’s constant R∞, the relative atomic mass of
the electron Ar(e), the molar mass constant Mu, the speed of light in vacuum c, and the
fine-structure constant α:

σ =
32π5hR4R4

∞

15Ar(e)4M4
u c6α8 . (1)

Table 4 lists the 2010 CODATA [Mohr et al., 2012] recommended values of the quantities that
determine the value of the Stefan-Boltzmann constant, and the measurement uncertainties
associated with them.

According to the GUM, the estimate of the measurand equals the value of the measurement
function evaluated at the estimates of the input quantities, asσ = 5.67037× 10−8 W m−2 K−4.
Both the GUM’s approximation and the Monte Carlo method produce the same evaluation
of u(σ) = 2× 10−13 W m−2 K−4.

These evaluations disregard the correlations between the input quantities that result from
the adjustment process used by CODATA. However, once these correlations are taken into
account via Equation (13) in the GUM, the same value still obtains for u(σ) to within the
single significant digit reported above.
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Monte Carlo Method

Summary statistics for sample of size 1e+06

ave = 127.732
sd = 0.07
median = 127.732
mad = 0.07

Coverage intervals

99% ( 127.55 , 127.912 ) k = 2.6
95% ( 127.595 , 127.8689 ) k = 2
90% ( 127.617 , 127.847 ) k = 1.6
68% ( 127.662 , 127.802 ) k = 1
50% ( 127.685 , 127.779 ) k = 0.67

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation)

y = 127.732
u(y) = 0.07

SensitivityCoeffs Percent.u2
V 26 140
I -6500 78
phi -220 560
Correlations NA -670
============================================

Figure 7: Resistance. Entries in the GUI correspond to the example discussed in
§8. Note that, in this case, the UncertaintyMachine reconfigured its graphical user
automatically to accommodate the correlations that had to be specified. In each nu-
merical result, only the digits that the UncertaintyMachine deems to be significant
are printed.
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Figure 8: Resistance — Densities. Estimate of the probability density of the out-
put quantity (solid blue line), and probability density (dotted red line) of a Gaussian
distribution with the same mean and standard deviation as the output quantity, cor-
responding to the results listed in Figure 7 on Page 14.

value std. meas. unc. unit

h 6.626 06957× 10−34 0.000 00029× 10−34 J s
R 8.314 4621 0.000 0075 J mol−1 K−1

R∞ 10 973731.568 539 0.000 055 m−1

Ar(e) 5.485 799094 6× 10−4 0.000 000002 2× 10−4 u
Mu 1× 10−3 0 kg/mol
c 299792 458 0 m/s
α 7.297352 5698× 10−3 0.000 000002 4× 10−3 1

Table 4: Stefan-Boltzmann. 2010 CODATA recommended values and standard
measurement uncertainties for the quantities used to define the value of the Stefan-
Boltzmann constant.
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Without additional assumptions, it is impossible to interpret an expression like σ ± u(σ)
probabilistically. The assumptions that are needed to apply the Monte Carlo method of
the GUM Supplement 1 deliver not only an evaluation of uncertainty, but also enable a
probabilistic interpretation.

If the measurement uncertainties associated with h, R, R∞, Ar(e), and α are expressed by
modeling these quantities as independent Gaussian random variables with means and stan-
dard deviations set equal to the values and standard measurement uncertainties listed in Ta-
ble 4, then the distribution that the Monte Carlo method of the GUM Supplement 1 assigns
to the measurand happens to be approximately Gaussian as gauged by the Anderson-Darling
test of Gaussian shape [Anderson and Darling, 1952].
Figure 9 on Page 17 reflects these facts and lists the numerical results, which imply that the
interval from 5.670332× 10−8 W m−2 K−4 to 5.670412 6× 10−8 W m−2 K−4 is a coverage
interval for σ with approximate 95 % coverage probability. The probability density of σ,
and the corresponding Gaussian approximation are displayed in Figure 10 on Page 18.

10 Software Installation

If R has not been previously installed in the target machine, then it will have to be installed
first. R is free and open-source, with versions available for all major operating systems: it
may be downloaded from www.r-project.org. A Java Runtime Environment (JRE) is also
necessary: it may be downloaded from www.java.com.

10.1 Microsoft Windows

Open the distribution ZIP archive, which contains the installer and the user’s manual, and
execute the installer. During installation, a dialog box will prompt the user to select whether
(the default is to do them all):

• Rscript.exe should be added to the search path for executables;

• Missing R packages should be installed automatically;

• A desktop icon should be created.

10.2 Linux

Assuming that R (version 2.14 or newer), a JRE, and xterm are installed on the system and
are in the user’s PATH for executables, then installation amounts to extracting the contents of
the distribution archive, and placing them in the desired folder, then executing the command
Rscript configure-R.R to install the required R packages. The software can be started
by executing either the command java -jar UncertaintyMachine.jar or the shell script
run.sh.

10.3 Apple OS X

The installation under Apple OS X is similar to the installation under Linux, including the
requirement that xterm be installed: it is different from the Terminal application, and it
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Monte Carlo Method

Summary statistics for sample of size 1e+06

ave = 5.67037e-08
sd = 2.05e-13
median = 5.6703725e-08
mad = 2.05e-13

Coverage intervals

99% ( 5.67032e-08 , 5.670425e-08 ) k = 2.6
95% ( 5.670332e-08 , 5.6704126e-08 ) k = 2
90% ( 5.670339e-08 , 5.6704062e-08 ) k = 1.6
68% ( 5.6703521e-08 , 5.670393e-08 ) k = 1
50% ( 5.670359e-08 , 5.670386e-08 ) k = 0.66

--------------------------------------------

Gauss’s Formula (GUM’s Linear Approximation)

y = 5.67037e-08
u(y) = 2.05e-13

SensitivityCoeffs Percent.u2
h 8.6e+25 1.5e-02
R 2.7e-08 1.0e+02
Rinfty 2.1e-14 3.1e-09
Ae -4.1e-04 2.0e-05
Mu -2.3e-04 0.0e+00
c -1.1e-15 0.0e+00
alpha -6.2e-05 5.3e-05
Correlations NA 0.0e+00
============================================

Figure 9: Stefan Boltzmann constant.
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Figure 10: Stefan-Boltzmann — Densities. Estimate of the probability density of
the output quantity (solid blue line), and probability density (dotted red line) of a
Gaussian distribution with the same mean and standard deviation as the output quan-
tity, corresponding to the results listed in Figure 9 on Page 17.

is part of Apple’s X11 package. Under Mountain Lion, X11 installs on demand: when an
application is first launched that requires X11 libraries, the user is directed to a download
location for the most up-to-date version of X11 for the Mac.
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